Targeted chromatin binding and histone acetylation in vivo by thyroid hormone receptor during amphibian development.

نویسندگان

  • L M Sachs
  • Y B Shi
چکیده

Amphibian metamorphosis is marked by dramatic, thyroid hormone (TH)-induced changes involving gene regulation by TH receptor (TR). It has been postulated that TR-mediated gene regulation involves chromatin remodeling. In the absence of ligand, TR can repress gene expression by recruiting a histone deacetylase complex, whereas liganded TR recruits a histone acetylase complex for gene activation. Earlier studies have led us to propose a dual function model for TR during development. In premetamorphic tadpoles, unliganded TR represses transcription involving histone deacetylation. During metamorphosis, endogenous TH allows TR to activate gene expression through histone acetylation. Here using chromatin immunoprecipitation assay, we directly demonstrate TR binding to TH response genes constitutively in vivo in premetamorphic tadpoles. We further show that TH treatment leads to histone deacetylase release from TH response gene promoters. Interestingly, in whole animals, changes in histone acetylation show little correlation with the expression of TH response genes. On the other hand, in the intestine and tail, where TH response genes are known to be up-regulated more dramatically by TH than in most other organs, we demonstrate that TH treatment induces gene activation and histone H4 acetylation. These data argue for a role of histone acetylation in transcriptional regulation by TRs during amphibian development in some tissues, whereas in others changes in histone acetylation levels may play no or only a minor role, supporting the existence of important alternative mechanisms in gene regulation by TR.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Tissue- and gene-specific recruitment of steroid receptor coactivator-3 by thyroid hormone receptor during development.

Numerous coactivators that bind nuclear hormone receptors have been isolated and characterized in vitro. Relatively few studies have addressed the developmental roles of these cofactors in vivo. By using the total dependence of amphibian metamorphosis on thyroid hormone (T3) as a model, we have investigated the role of steroid receptor coactivator 3 (SRC3) in gene activation by thyroid hormone ...

متن کامل

A dominant-negative thyroid hormone receptor blocks amphibian metamorphosis by retaining corepressors at target genes.

The total dependence of amphibian metamorphosis on thyroid hormone (T(3)) provides a unique vertebrate model for studying the molecular mechanism of T(3) receptor (TR) function in vivo. In vitro transcription and developmental expression studies have led to a dual function model for TR in amphibian development, i.e., TRs act as transcriptional repressors in premetamorphic tadpoles and as activa...

متن کامل

Thyroid hormone-regulated target genes have distinct patterns of coactivator recruitment and histone acetylation.

Thyroid hormone receptors (TRs) are ligand-regulated transcription factors that bind to thyroid hormone response elements of target genes. Upon ligand binding, they recruit coactivator complexes that increase histone acetylation and recruit RNA polymerase II (Pol II) to activate transcription. Recent studies suggest that nuclear receptors and coactivators may have temporal recruitment patterns ...

متن کامل

Negative regulation of TSHalpha target gene by thyroid hormone involves histone acetylation and corepressor complex dissociation.

Currently, little is known about histone modifications and molecular mechanisms of negatively regulated transcription. In pituitary cells, thyroid hormone (T(3)) decreased transcription, and surprisingly increased histone acetylation, of TSHalpha promoter. This increase was mediated directly by thyroid hormone receptor. Histone acetylation of H3K9 and H3K18 sites, two modifications usually asso...

متن کامل

SRC-p300 coactivator complex is required for thyroid hormone-induced amphibian metamorphosis.

Gene activation by the thyroid hormone (T3) receptor (TR) involves the recruitment of specific coactivator complexes to T3-responsive promoters. A large number of coactivators for TR have been isolated and characterized in vitro. However, their roles and functions in vivo during development have remained largely unknown. We have utilized metamorphosis in Xenopus laevis to study the role of thes...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 97 24  شماره 

صفحات  -

تاریخ انتشار 2000